家庭水電空調簡易修護

課程名稱:冷凍空調保養與製冰技術

授課教師:邱品逢

目錄

壹、前 言

貳、冷凍空調之應用

參、冷凍空調基本原理

肆、冷氣機選用與用電評估

伍、冷氣機基本保養(性能評估實習、保養實習)

陸、結論

壹、前 言

- · 冷凍即應用除熱設備,將環境的熱量移除,使環境 溫度降低零度℃以下者,稱之為冷凍。
- · <u>空調之範圍</u>較冷凍要求更高,空調除了控制<u>溫度</u>以外,還需考量到<u>濕度、氣流分佈與空氣品質IAQ。</u>
- · 冷凍空調專業人員是室內環境控制的魔術師,工程 師需依業主製程需求進行設計,達到室內環境之要 求(無塵室、負壓病房、生物科技低溫技術…)。
- 冷凍空調人員除室內環境控制以外,在工程設計時需考量到設備運轉後的節能控制(營運費用)。
- 冷凍空調是能源轉移之設備。

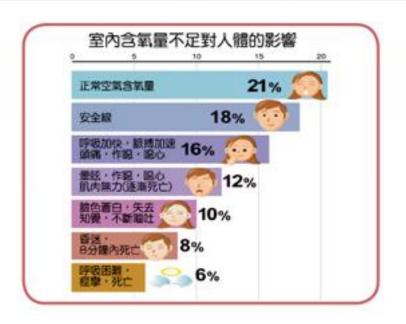
貳、冷凍空調之應用

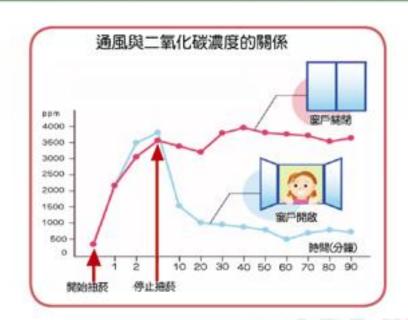
A冷凍

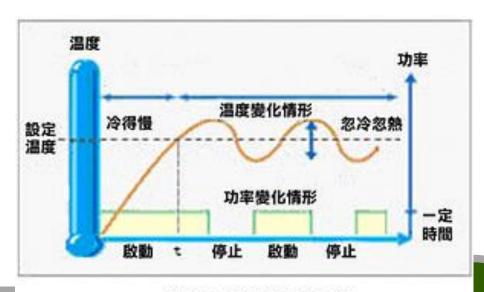
家用

商用

工業用(醫療用)


B空調

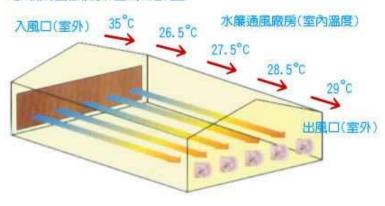

家用


商用

工業用(醫療用)

室內含氧量不足對人體的影響

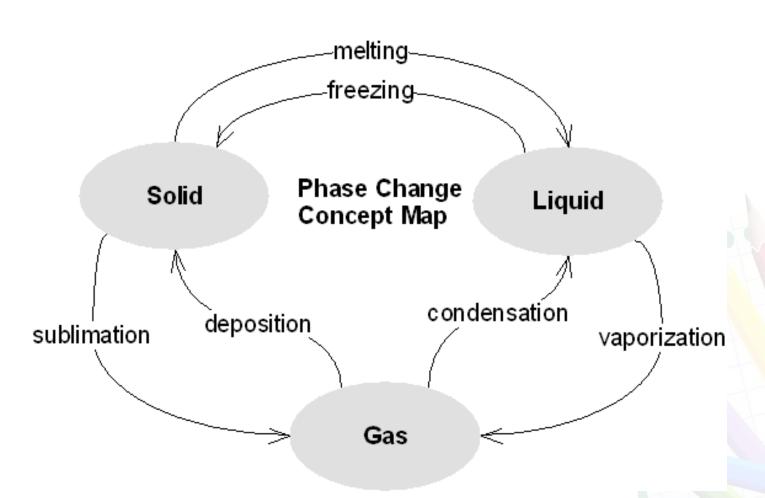
一般冷氣運作情形

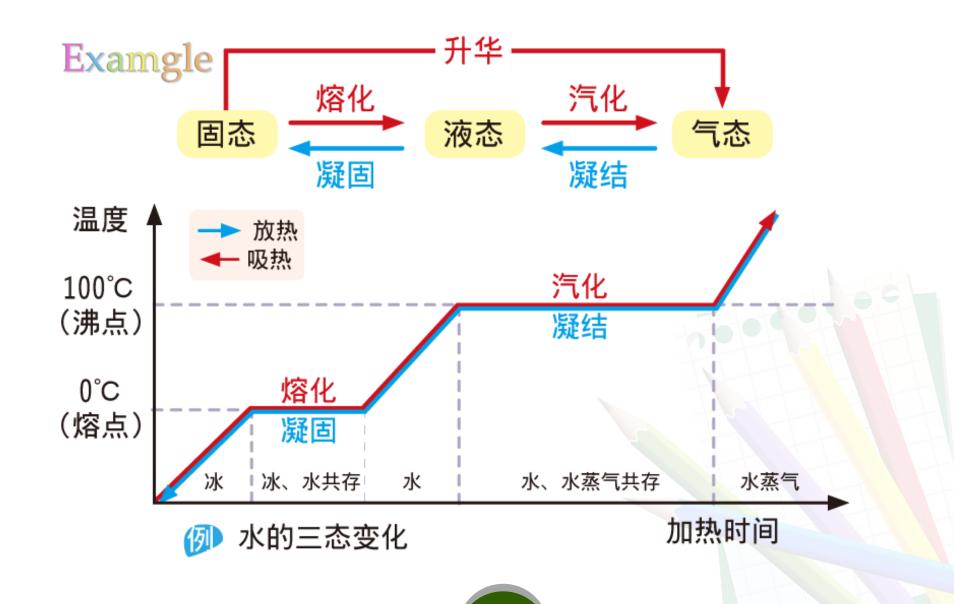


節能

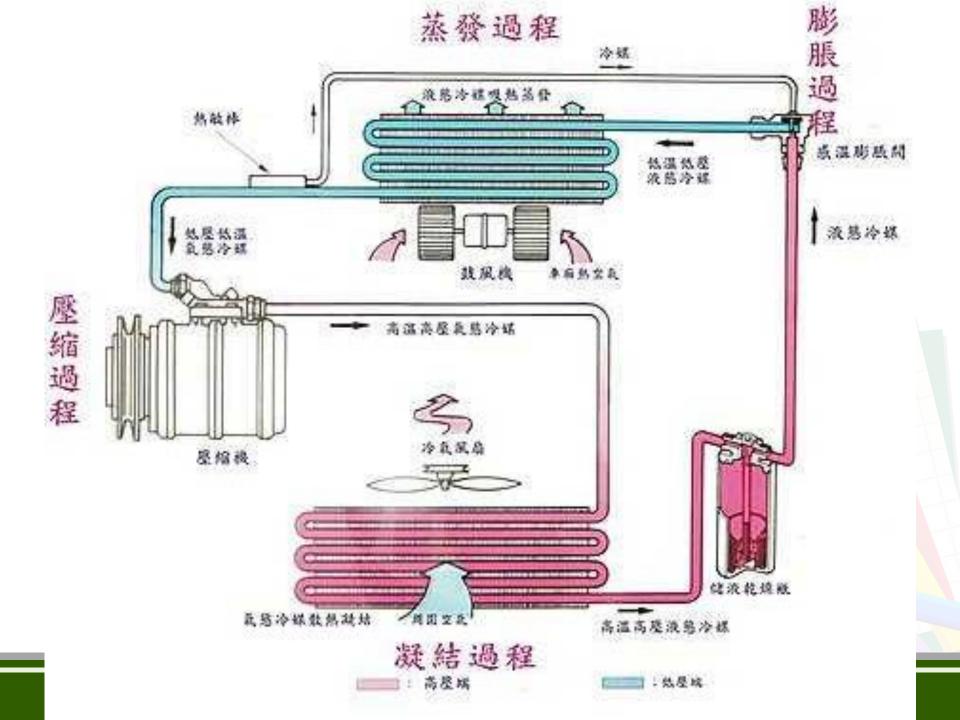
空氣品質

水簾通風原理示意圖


熱舒性

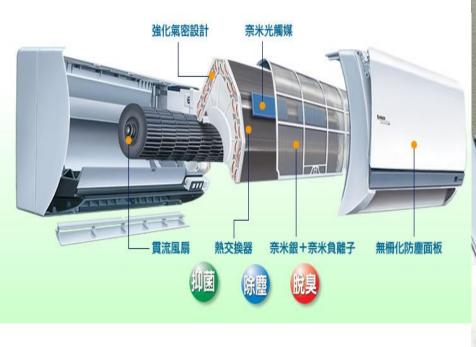

參、冷凍空調基本原理

- ✓ 液態變氣態 (吸熱)
- ✓ 氣態變液態 (放熱)
- ✓ 熱傳方向 高溫向低溫


顯熱:溫度改變相態不變 潛熱:溫度不變相態改變

多、冷凍空調基本原理

- ✓ 冷凍四大元件蒸發器、冷凝器、壓縮 機與膨脹元件。
- ✓ 蒸發器+冷凝器(熱交換器)
- ✓ 蒸發器:吸熱元件
- ✓ 冷凝器:散熱元件
- ✔ 膨脹元件:降壓+流量控制
- ✓ 壓縮機:昇壓+加熱



多、冷凍空調基本原理

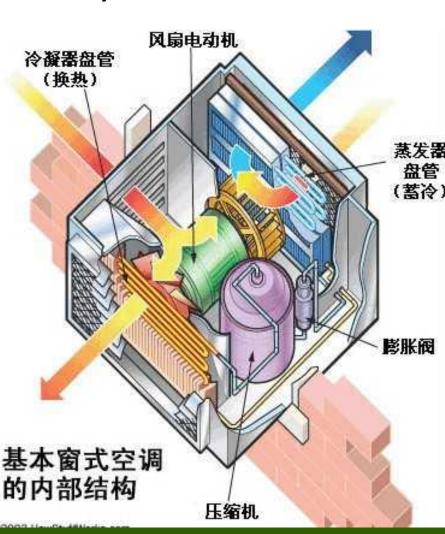
- ✓ 冷凍四大元件蒸發器、冷凝器、壓縮 機與膨脹元件。
- ✓ 蒸發器+冷凝器(熱交換器)
- ✓ 蒸發器:吸熱元件
- ✓ 冷凝器:散熱元件
- ✔ 膨脹元件:降壓+流量控制
- ✓ 壓縮機:昇壓+加熱

參、冷凍空調基本原理(熱交換器)

- ✓ 蒸發器+冷凝器(熱交換器)
- ✓ 蒸發器:吸熱元件(室內機)
- ✓ 冷凝器:散熱元件(室外機)

多、冷凍空調基本原理(壓縮機)

- ✓ 壓縮機:昇壓+加熱
- ✓ 壓縮機依壓縮模式分成容積式與離心式



- ✓ 空調、採暖設備的能效比EER(英文為 Energy efficiency ratio)(越大越好)
- ✓ 在額定工況和規定條件下,空調器進行 製冷運行時,製冷量與有效輸入功率之 比。
- ✓ 量測模式分成T1(溫帶地區) T2(熱帶地區) T3(熱帶地區)

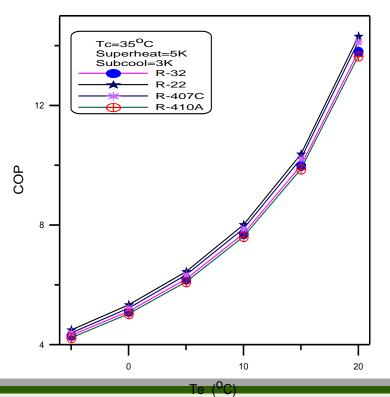
- ✓ 量測模式分成T1(溫帶地區)
- ✓ 室内27°CDB;19°CWB
- ✓ 室外35°CDB;24°CWB

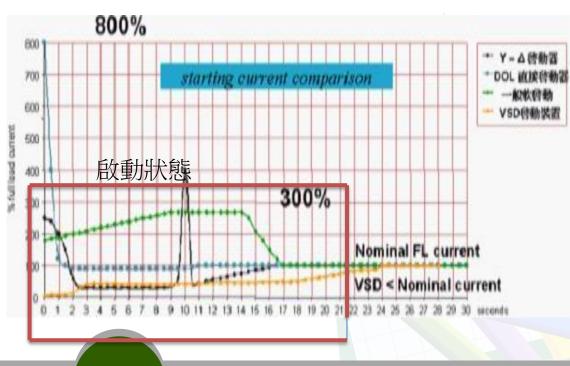
- ▶選購高 EER貼有「節能標章」的冷氣機。
- ▶EER(W/W) 值愈高,則冷氣機愈省電。
- ➤ EER 值提高 0.1(W/W) , 約可節約 3.5% 用電。

冷凍能力W	EER	空調設備用電量
5000	1.5	3300
5000	2.0	2500
5000	2.5	2000
5000	3.0	1660
5000	3.5	1420

省型気冷式(海経電功率3KW以下)				適用新版 CNS3615 及 CNS14464		
機種	總冷氣能力		4	能源效率 比值		貨施 日期
	適用實版 CNS3615	適用新版 CNS3615 及 CNS14464	想法	(EER) Kcal/h-W (BTU/h- W)	能源效率比 (EER) W/W	
單體	低於 2,000Kcal/h	低於 2.3kW	一般型 式、 差頻式 (60Hz)	2.33(9.24	2.71	民國九一年月日
	2,000Kcal/h 以上 3,550Kcal/h 以下	2.3kW N.E. 4.1kW N.F	一般型 式·變 頻式 (60Hz)	2.38(9.44)	2.77	
	高於 3,550Kcal/h	高於 4.1kW	一般刻 式· 變頻式 (60Hz)	2.24(8.89)	2.60	
分離式	3,550Kcal/h &F	4.1kW N.F	一般或	2.55 (10.12)	2.97	
		4.1EW PA	第9月式 (60Hz)	2.38(9.44)	2.77	
	高於 3,550Kcal/h	高於 4.1kW	一般型 式。 變頻式 (60Hz)	2.35(9.32)	2.73	

EER1.5與 EER3.5年用電量比較,假設設備每年使用1000小時,每度電5元,計算不同EER設備之年用電電費ans


- (1) EER1.5=3.3kW×1000hr×5=16,500元
- (2) EER3.5=1.42kW×1000hr×5=7, 100元


冷凍能力W	EER	空調設備用電量	年用電費
5000	1.5	3300	16,500
5000	2.0	2500	12,500
5000	2.5	2000	10,000
5000	3.0	1660	8,300
5000	3.5	1420	7,100

- ✓ 一冷凍噸為每小時自室內移出熱量相當於 3.5kW,以此推算,每坪房間約 0.52kW
- ✓ 選用的冷氣機能力太大,壓縮機會頻繁啟閉, 比較耗電,而且減損壓縮機壽命。
- ✔ 若房間位於頂樓或有西曬,則可選用大一級。
- ▶ 選購高 EER貼有「節能標章」的冷氣機。
- ➤EER(W/W) 值愈高,則冷氣機愈省電。

冷氣溫度與啟動用電

- ◆要將空氣中的水氣凝結所需之熱量為539kcal/kg,此過程必需移除很多熱量,為使水氣凝結蒸發溫設定最小,由圖可以看出蒸發溫下降,性能COP將下降,增加用電。
- ◆冷氣壓縮機啟動3分鐘休息6分鐘這樣你光啟動電流消耗就比讓冷 氣運轉消耗還大。

伍、冷氣機之基本保養實習

- ✓ 冷氣機散熱端熱交換器阻塞時將使設備散熱不良,造成運轉電流上升,用電量將增加。
- ✓ 冷氣機吸熱端熱交換器阻塞時將使設備熱交換不良,造成室內空氣條件變差,需定期進行設設保養。

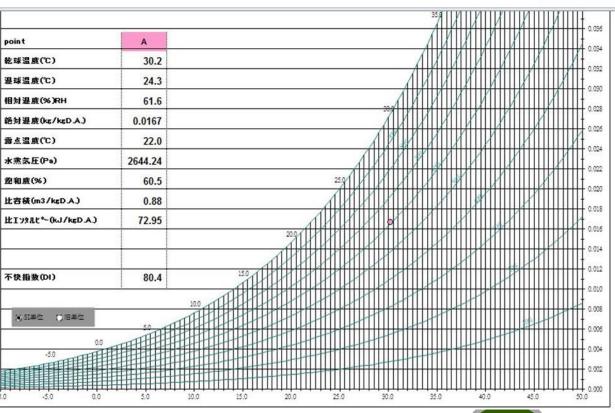
家用冷氣性能評估技術實習

- ◆量測冷氣機滿載運轉電流、電壓與功率因數,總用電量
- ◆量測冷氣機出回風冷氣乾濕球溫度與回風風量,計算冷 氣能力計算設備當下之EER
- ◆太低時查看散熱與蒸發系統是否有熱交換失敗之問題, 需要保養。

冷氣性能評估

量測系統總用電量

量測系統冷氣能力




分析是否進行保養

計算設備EER

獨創宗米光觸媒、宗米銀、宗米負離子清淨裝置,達到強力抑菌、除塵、脱臭效果;並搭載蒸發器側板與底座間強化氣密設計的特殊結構,有效阻絕灰塵、棉絮吸入,使貫流風扇不卡髒污,空氣更清淨。 **強化氣密設計**奈米光觸媒

